DEFT 2020 : détection de similarité entre phrases et extraction d’information



DEFT 2020 : détection de similarité entre phrases et extraction d’information
Mike Tapi Nzali
Ce papier décrit la participation de Reezocar à la campagne d’évaluation DEFT 2020. Cette seizième édition du challenge a porté sur le calcul de similarité entre phrases et l’extraction d’information fine autour d’une douzaine de catégories dans des textes rédigés en Français. Le challenge propose trois tâches: (i) la première concerne l’identification du degré de similarité entre paires de phrases; (ii) la deuxième concerne l’identification des phrases parallèles possibles pour une phrase source et (iii) la troisième concerne l’extraction d’information.
Nous avons utilisé des méthodes d’apprentissage automatique pour effectuer ces tâches et avons obtenu des résultats satisfaisants sur l’ensemble des tâches.





Participation d’EDF R&D à DEFT 2020



Participation d’EDF R&D à DEFT 2020
Danrun Cao, Alexandra Benamar, Manel Boumghar, Meryl Bothua, Lydia Ould Ouali and Philippe Suignard
Ce papier décrit la participation d’EDF R&D à la campagne d’évaluation DEFT 2020. Notre équipe a participé aux trois tâchés proposées : deux tâches sur le calcul de similarité sémantique entre phrases et une tâche sur l’extraction d’information fine autour d’une douzaine de catégories. Aucune donnée supplémentaire, autre que les données d’apprentissage, n’a été utilisée. Notre équipe obtient des scores au-dessus de la moyenne pour les tâches 1 et 2 et se classe 2e sur la tâche 1. Les méthodes proposées sont facilement transposables à d’autres cas d’application de détection de similarité qui peuvent concerner plusieurs entités du groupe EDF. Notre participation à la tâche 3 nous a permis de tester les avantages et limites de l’outil SpaCy sur l’extraction d’information.