DOING@DEFT : cascade de CRF pour l’annotation d’entités cliniques imbriquées



DOING@DEFT : cascade de CRF pour l’annotation d’entités cliniques imbriquées
Anne-Lyse Minard, Andréane Roques, Nicolas Hiot, Mirian Halfeld Ferrari Alves and Agata Savary
Cet article présente le système développé par l’équipe DOING pour la campagne d’évaluation DEFT 2020 portant sur la similarité sémantique et l’extraction d’information fine. L’équipe a participé uniquement à la tâche 3 : “extraction d’information”. Nous avons utilisé une cascade de CRF pour annoter les différentes informations à repérer. Nous nous sommes concentrés sur la question de l’imbrication des entités et de la pertinence d’un type d’entité pour apprendre à reconnaître un autre. Nous avons également testé l’utilisation d’une ressource externe, MedDRA, pour améliorer les performances du système et d’un pipeline plus complexe mais ne gérant pas l’imbrication des entités. Nous avons soumis 3 runs et nous obtenons en moyenne sur toutes les classes des F-mesures de 0,64, 0,65 et 0,61.


DEFT 2020 – Extraction d’information fine dans les données cliniques : terminologies spécialisées et graphes de connaissance



DEFT 2020 – Extraction d’information fine dans les données cliniques : terminologies spécialisées et graphes de connaissance
Thomas Lemaitre, Camille Gosset, Mathieu Lafourcade, Namrata Patel and Guilhem Mayoral
This paper presents our rule-based approach for fine-grained information extraction in clinical data, submitted in reponse to Task 3 at the DEFT 2020 evaluation campaign. We design (1) a dedicated medical terminology from existing medical references and (2) a knowledge graph based on the semantically rich knowlege base – JeuxDeMots.